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Abstract 
Due to the increasing amount of renewable 

energy on the energy market resulting in a 
higher volatility of energy supply, 
manufacturing companies have an enhanced 
awareness of their energy demand  in order to 
benefit  from alternating prices. Energy 
flexibility is an opportunity  to adapt 
manufacturing systems to the changing 
circumstances. The idea of energy flexibility 
follows the approach of synchronizing energy 
demand with supply, e.g. to exploit 
alternating weather conditions. This paper 
presents an energy-aware demand side 
management (DSM) approach to control 
manufacturing systems on the component 
level. The developed closed loop control is 
based on an algorithm fed with 
manufacturing, energy and environmental 
data and is realized at an Internet of Things 
(IoT) platform. Based on machine tool models 
the energy demand of a hypothetical factory 
is simulated. Taking on-site power generation 
data into account, the aim of the developed 
energy-aware control loop is to reduce the 
appearing residual power that must be 
balanced with grid-supplied power. 
Keywords: energy flexibility; machine tools; 
on-site power generation; Internet of Things 
 

 1. Introduction 
To achieve global climate agreements recently 

updated at the UN conference in 2015, new 
restrictions addressing the greenhouse gas 
(GHG) emissions were introduced by the Ger- 
man government. The Renewable Energy Law 
defines feed-in remuneration to increase the 

amount of renewable energy. As a result, the 
share of renewable energy has been increasing 
continuously to a rate of 29 % (188 GWh) in 
2016[1]. 

The German climate protection plan 2050 [2] 
includes a holistic energy concept addressing the 
energy sector, buildings, transport, agriculture 
and industry. For the industry sector, a reduction 
of GHG emissions of 49 % is striven for. Both 
the changing energy market with an increasing 
share of renewable and the rising viability of 
on-site power generation for manufacturing 
companies lead to a volatile energy application 
of the most suitable methods are identified and 
the approach is realized on an IoT platform. 

2. Energy flexibility in smart factories 
 The future factory 
Due to environmental circumstances, the 

entire factory structure will change resulting in 
new challenges. The conventional goal triangle 
in manufacturing companies is evolving to a 
pyramid with the additional targets flexibility 
and sustainability [3] (figure 1). 

 
 

Fig. 1. Evolution of targets in manufacturing 
companies 
 

Addressing sustainability, future factories 
should take social, economic and ecological 
aspects into account. A future concept of a 
sustainable manufacturing site is for example 
introduced by Stoldt et al. [4] with the key issues 
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resource efficiency, zero emission and 
embedding people. 

Besides the increasing awareness for 
sustainability, the digitalization influences the 
future factory significantly. The advantages of 
the implementation of IoT technology in the 
future are to be found in literature: 

x Flexibility, compatibility, scalability, 
ubiquity [5-8] 

x Resource, cost and operational efficiency 
[7,8] 

x Real-time capability and robustness [6,7,9] 
x Usability and transparency [6,9] 
x Complexity and intelligence [6,9] 
The above-mentioned advantages of 

interlinking based on innovative information 
technology accelerates the fourth industrial 
revolution. Therefore, it is assumed, that the 
conventional automation pyramid will evolve to 
CPS (cyber- physical system) - based 
automation [10]. 

The implementation of IoT technologies 
supports the adaptation of future factories to 
changing environmental circum- stances and can 
be useful for energy management in 
manufacturing companies. 

 Evaluation of energy flexibility in the 
research field of energy management in 
production systems 

The research field of energy management 
includes different approaches and levels to face 
the challenges along with re- source scarcity. 
Both energy data acquisition and analysis as well 
as energy data monitoring are requirements for 
energy flexible production planning or control. 
Overall energy management includes all aspects 
regarding resource allocation and planning. The 
evaluation of energy flexibility is observed on all 
re-search field levels. 

In general, Reinhart et al. [11] define energy 
flexibility as the capability of a production 
system to adapt quickly  and with low financial 
expenditure to changes on the energy market. 
Based on this definition, dimensions to identify 
the energy flexibility on the machine level are 
introduced [12]. Accordingly, energy flexible 
machines have low switching times, high power 
change rates  and  short  critical  times. Popp et 
al. [13] determine the degree of technical energy 
flexibility based on the components¶ demand 
and their relation among each other quantified 
with the Energy Independency Indicator (EII). 

Furthermore, energy flexibility in- dices are 
defined to evaluate energy flexibility on the 
component and on the machine level [14]. Simon 
et al. [15] intro- duce a method for the technical 
and economical evaluation of energy flexibility 
regarding the identification and categorization of 
measures. 

The introduced evaluation approaches strive 
for energy flexible production planning and 
control. Beier et al. [16] pre- sent a detailed 
literature review of related research by dividing 
the relevant energy flexible research approaches 
into planning and real-time execution. Whereas 
the planning approaches include organizational 
methods, the real-time execution targets 
technical energy flexibility. Relevant technical 
research approaches are to be found in 
[13,16-23]. 

 Data communication in energy flexible 
production systems 

The implementation of IoT technology is in 
progress, thus different levels are covered in 
literature. The OPC UA interface commonly 
used in industry can be expanded for energy data 
transfer. Especially due to the 
platform-independency,  the use of OPC UA is 
widespread [24]. Bauer et al. [25] abandon the 
hierarchical automatization pyramid. The 
concept targeting the adaption of energy demand 
to supply includes a so- called energy 
synchronization platform consisting of a 
market-side and a company-side platform. On 
the company-side platform the communication 
model is based on the paradigm everything as a 
service. A factory within this concept is al- ready 
understood as a cyber-physical production 
system. Alternative approaches use wireless 
sensor networks to enable real-time energy 
monitoring [5,8]. Tan et al. [26] expand the 
approach of energy monitoring by a benchmark 
algorithm detecting advanced energetic statuses 
and conceptually intro- duce a totally IoT based 
approach. Shrouf et al. [27] develop an IoT 
energy management concept based on research, 
literature and expert interviews including both 
energy monitoring and a holistic integration of 
energy data into manufacturing. 

3. IoT based closed loop control for energy 
flexible production systems 

The introduced research works according to 
data communication in smart factories is 
currently on a conceptual level and not applied 
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to energy flexible control approaches. Therefore, 
in the following an overall factory concept of an 
IoT based control loop is introduced and the 
simulation model structure, the control strategies 
and the model parameterization are defined and 
evaluated. 

 Overall concept of IoT based energy flexible 
factories 

Figure 2 shows the overall factory model for 
the closed loop control for energy flexible 
production systems. Both on the component and 
on the factory level, demand data is measured 
and communicated to the cloud. Within the 
cloud, a database includes relevant energy 
information, e.g. the EII of all components. 
Furthermore, supply data from on-site 
generation and the power grid is provided to the 
cloud. To realize short-term prediction further 
data could be included, e.g. from weather or 
energy market forecasts. The implemented 
control strategy at the cloud computes the 
control commands from the given information 
according to the control strategy. 

 
Fig. 2. Overall concept of IoT based energy 
flexible factories 

 
 Simulation model structure 
To identify the impact of the closed loop 

control a simulation model was built up in 
Matlab  Simulink. That model can be executed 
locally or on the IoT platform Thing Speak in an 
extended version. The modeling assumptions 
and simplifications were defined to detect 
relevant information  only. The components¶ 
behavior is simulated with the following 
different modules (figure3). 

Functional storage module: Each component is 
modeled with a so-called functional storage, 
which is (un)loaded during the component 
¶VDFWLYH(passive) state. Based on the mean 

state time  of  the component, the storage  size 
and the  filling(emptying) gradient can be 
determined. The internal control switches the 

component to active (passive), when the storage 
reaches the bottom (top) dead center SOCbottom 
(SOCtop). 

Convergence module: This module balances 
the compo-QHQW¶VVWDte of 
charge(SOC)1attheendofthesimulationto the 
start value (50 %) to avoid faults during the 
evaluation. 

Reference component module: As a reference 
component module, a one-to-one copy of the 
introduced modules only with internal control 
was used to determine the differences between 
the only internal (storage-based) and the 
externally controlled (cloud-based) component. 

To avoid inefficient control commands and 
high frequency switching, the external control is 
allowed in the following SOC range:  

 
 
Fig.3.62&WLPHFRXUVHZLWKVLPXOD

WLRQPRGXOHV¶IXQFWLRQV 
 
In addition to the component subsystem, the 

model includes a determination subsystem, 
which computes the relevant key figures based 
on the input parameters 

x mean power demand in active state pdem,a, 
x mean power demand in passive state pdem,p,x 
component or machine status s 

x and the absolute SOCabs. 
The resulting key figures for the different 

control strategies are defined within formulas (1) 
to (3). 

 
To evaluate the impact of the developed 

energy flexible control strategies, present data 
were considered, whereas fore- casts were 
neglected initially. 

 Control Strategies 
To adapt the energy demand to the supply, 

three different control strategies are developed. 
All considered control strategies are based on the 
total power demand data (Pdem) and on-site 
generation data (Pgen). The difference between 
the two parameters is defined as the residual 
power (Pres), which is used to describe the 
interaction of the factory and the power grid 
(formula4). 

Pres > 0, if Pdem > Pgen Æ grid supply 



                                                                                
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)   

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017 

DOI:10.21276/ijcesr.2017.4.11.10  
64 

 

 
Pres  
< 0, if Pdem 

 
<Pgen 
  
Æ grid feed-in   (4) 
 
Pres = 0, if Pdem = Pgen Æ grid neutrality 
As third input, component data indices were 

used, whose specifications depend on the 
specific control strategy. 

Strategy 1: power difference: The simplest 
decision rule is based on the 
FRPSRQHQW¶VPHDQSRZHUGLIIHUHQFH 
.The 

mean power differences of all regarded 
components are sorted by sign and by value. At 
first, all components with a mean power 
difference with the same sign as the residual 
power are excluded. Secondly, the largest 
remaining power difference is selected and the 
related component is switched (c = 1). Fig- ure 4 
shows the control strategy starting with the 
component with the maximum value of mean 
power difference. 

 
 
Fig.4.SchemeofCS1(start:max_¨S_)DQG&62

(start:max/minSOC) 
Strategy 2: state of charge: The SOC-control 

strategy follows the same scheme as strategy 1 
(figure 5), but differs in iteration order. Whereas 
strategy 1 starts with the component i with the 
largest value of mean power difference, strategy 
2 starts with the component holding the 
smallest/largest SOC. 

Strategy 3: best fit: The third control strategy 
takes an additional static database into account, 
which includes all possible configurations of the 
system. For an exemplary five- 
component-system the corresponding database 
with all pos- sible current states (rows) and all 
possible target states (columns) is computed 
resulting in a matrix with the dimension 

'p pdem,a–pdem,p 
 

–,s active 
+,s passive 
 
 SOC  
SOC abs 
SOC top – SOC bottom 
  
25 x 25, since each component has two 

different states (active  and  passive).  The   
matrix  contains   between one current and one 
target state. Based on the value of the residual 
power  the  best  fitting  is chosen to determine 
the target state. The method of control strategy 3 
is shown in figure5. 

 
 
 
 Model implementation 
The simulation model represents a virtual 

factory consisting of machines of three different 
types M1 (4x), M2 (2x) 

and M3 (4x) and their energy independent 
components C11,  C12 (both M1), C2 (M2) and 
C3 (M3). Measured power data of those 
components are provided in the component 
model. To consider all machine components, the 
total power demand on the factory level is based 
on measured data of five days and scaled 
regarding the installed amount of flexible 
energy. The on-site generation data is based on 
real measured data of radiation and wind during 
five days in November and scaled by the 
installed renewable power in the model. 

4. Simulation procedure and method 
evaluation 

The simulation model was used with different 
parametrization to analyze and evaluate the 
closed loop control considering three different 
purposes, explained in the following. 

 Simulation parametrization 
Selecting the influencing parameters and 

configurations, the simulation model should lead 
to the identification of 

x the performance of the control loop 
regarding the control strategies, the simulation 
step size and the delay time, 

x the most suitable factory configuration 
considering the amount of energy flexible 
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components and the dimensioning of installed 
on-site generation and 

x the impact of the IoT environment. 
Therefore, the simulation model ran according 

to the parameters shown in table 1. 
 
 
 
 
Table 1. Simulation parameters 

 
 

The introduced control strategies were applied 
individually (e.g. CS 1) or in combination by 
equal weight (e.g. CS 12). The step size is a 
simulation parameter considering the size  of 
simulation time steps and can be varied 
manually in the simulation. To ensure model 
plausibility the parameter specification for the 
step size was chosen in a certain range. The 
delay time describes the time lag within the  
system  which in KPI1 KPI2 KPI3 

general occurs in closed control loops. The 
values for this parameter were considered 
regarding the minimal delay time (due to the 
model at least as high as the chosen step size) 
and expected delays within the IoT simulation 
(higher, not exact computable delay due to 
communication interfaces). The amount of 
flexible energy was initially set to 18 % 
(common value for machine tools [13,28]) and 
varied up-/downwards. The dimensioning of the 
on-site generation (DOG) was realized regarding 
the amount of energy demand, i.e. in case of 
1:0.5 the generated amount of energy of five 
days is half of the energy demand over the same 
period. 

 Definition of key performance indicators 
(KPI) 

To evaluate the closed loop control, three 
different key performance indicators were 
defined. The determination of all KPIs is based 
on the resulting residual power with and with- 
out application of the developed control loop. 

KPI 1: reduction of CO2 emissions: KPI 1 
determines the impact of the control method 
regarding CO2 emissions. Grid supply is 
weighted with the German CO2 emission factor 
of 527 g/kWh (power trade balance) [29], 
whereas on-site generated power is assumed to 
be renewable and is therefore emission-free. 

KPI 2: additional time of grid neutrality: This 
KPI evaluates the influence of the closed loop 
control on the time of grid neutrality, i.e. all 
simulation time steps with Pres = 0. 

KPI 3: cost reduction: KPI 3 considers the 
economic evaluation concerning the running 
costs. Due to the newest development within the 
EEG legislation towards market regulated 
feed-in remunerations and the decreasing 
production costs of renewable energy, the 
consumption of own-generated power will get 
more viable in the future. To weight on-site 
generation and grid supply power, future prices 
are used according to scenario B in [28] (table 2). 

 
Table 2. Future scenario for energy price 

development 

 
  
 Future Scenario Unit 
 Mean energy price (grid supply)  0.16

 ¼/N:K 
Feed-in-rewards 0.06 ¼/N:K 
Own energy production costs 0.05 ¼/N:K 
 
 Performance of the closed loop control 
The performance was evaluated considering 

three parameters: step size, delay time and 
control strategy. To analyze and compare their 
influences, a sensitivity analysis was carried out. 

Figure 6 shows the sensitivity of the three KPIs 
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Dimensioning of the on-site generation  for the 
step size (left) and the delay time (right). model 
execution system   local,IoT  

The introduced control strategies were applied 
individually (e.g. CS 1) or in combination by 
equal weight (e.g. CS 12). The step size is a 
simulation para-meter considering the size  of 
simulation time steps and can be varied 
manually in the simulation. To ensure model 
plausibility the parameter specification for the 
step size was chosen in a certain range. The
 -100   -50 0 %100 

delay time describes the time lag within the  
system  which in KPI1 KPI2 KPI3 general 
occurs in closed control loops. The values for 
this parameter were considered regarding the 
minimal delay time (due to the model at least as 
high as the chosen step size) and expected delays 
within the IoT simulation (higher, not exact 
computable delay due to communication 
interfaces). The amount of flexible energy was 
initially set to 18 % (common value for machine 
tools [13,28]) and varied up-/downwards. The 
dimensioning of the on-site generation (DOG) 
was realized regarding the amount of energy 
demand, i.e. in case 

 

 
Fig. 6. Influence factors step size (left) and 

delay time (right) 
Both parameters show an inversely 

proportional influence on the KPIs. Whereas the 
impact of a changing step size is very small, the 
variation of delay time shows a more distinct 
effect. The sensitivity for step size is 
approximately linear, i.e. in case of further 
increasing (decreasing) the step size, the effect 
on the KPIs gets equally smaller (higher). The 
highest sensitivity against the step size can be 
observed for KPI2(additional time of grid 
neutrality). In contrast, the observed impact 
declines very fast for increasing delay time. 
Nevertheless, a saturation is observed for KPI 2 
and KPI 3, which means that delay times higher 
than a certain threshold do not further decrease 

the influence. The variation of the delay time 
changes the flexibility of the whole system, and 
therefore has a significant influence on all KPIs. 

The results concerning the control strategy are 
shown in figure 7. The control strategies (x-axis) 
are sorted by their impact on the KPIs. Control 
strategy 2 shows the highest influence on all 
KPIs, whereas the lowest influence is observed 
for strategy 3. CS 1 is in the same range as CS 2. 
The insufficient results for control strategy 3 are 
explicable by the unconsidered input data SOC. 
In case of external control 
commandintheEORFNHGFRPSRQHQW¶V62
&range,the computed best fit combination of the 
FRPSRQHQWV¶VWDWes is not achieved. 
Both, CS 3 and CS 1, do not consider SOC as 
decision value. Nevertheless, the impact for 
strategy 3 is higher due to sequential formation 
of control commands. Executed simulations with 
combination CS23 and CS123 result in between 
the individual control strategies and are 
neglected in the presentation to ensure clear 
presentation. energy flexibility is rising with 
increasing amount of flexible energy regarding 
KPI 1 and KPI 3. The influence of the energy 
flexibility on KPI 2 (additional time of grid 
neutrality) is very low in comparison. This can 
be explained by the variation of energy 
flexibility just based on the flexible energy and 
neglecting the flexible time of use, i.e. the 
period, the flexible energy is available. 
Therefore, increasing (de- creasing) energy 
flexibility does not affect time parameters. 
Concerning the influence of DOG, the same 
effect was observable. Its impact on KPI 2 is 
lower than  on  KPI 1  or KPI 3, due to the 
dimensioning according to the energy amount 
only. The impact on the reduction of costs (KPI 
3) shows a maximum at the dimensioning of 
1:1.15. Based  on  the determination of the cost 
reduction a maximum close to a 1:1 was 
expected. The influence on KPI 1 (reduction of 
CO2 emissions) is increasing with rising on-site 
generation. The differences in impact on KPI 1 
and KPI 3 can be attributed to differences in their 
determination. Whereas KPI 1 (reduction of 
CO2 emissions) weights grid-supplied power 
only, the determination of KPI 3 (reduction of 
costs) includes grid and self supplied power. To 
compare the parameters, the average of all KPIs 
was used to identify differences. Figure 8 shows 
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the delay time with the largest impact on the 
KPIs. 

 
100 
 
% 
 
0 
 
-50 
  
Fig. 9. Influence factors energy flexibility 

(left) and DOG (right) 
4.5. IoT environment 
To analyze the impact of the IoT environment, 

the local model was modified and partly 
implemented at the cloud. One of the main 
improvements of cloud-based closed loop 
control is the centralized accumulation of 
flexibility information, which is significant for 
decision making and developing control 
strategies for all different flexible components in 
a system of production machines to exploit all 
given energy flexibility potentials in an 
optimized way. The cloud-base  simulation was 
executed with the following parameters: 

influencing parameter variation 
delay time control strategy 
  
control strategy 1, step size 0.1 s, delay time 

0.1 s, energy flexibility 18 %, DOG 1:1. Figure 
10 shows the result range  of the locally 
conducted simulations and the IoT result range. 

 

 
Fig. 8. Comparison of influence parameters 
The control strategy cannot be treated as a 

continuous parameter. Comparing control 
strategy 1 and 2 the impact on the KPIs is as high 
as the influence of the step size. Strategy 3 shows 
an effect in the range of the delay time¶ 
VLQIOXHQFH. 

4.4. Factory configuration 
The factory configuration was analyzed by 

regarding the parameters energy flexibility and 

dimensioning of on-site generation (DOG) as 
shown in figure 9. 

 The impact of the. The results of the IoT 
simulation show conformity with the 
ORFDOVLPXODWLRQ¶VUHVXOWVUHJD
UGLQJKPI1andKPI3.TheIoT model outcome is 
approximately located in the  middle  for KPI 3, 
whereas the results for KPI 1 are in the lower 
edge. In case of KPI 2 the IoT simulation results 
do not reach the local simulation results. In 
IoT-based simulation the occurring  delay times 
are higher than in locally execution and results in 
less sufficient performance regarding the KPIs. 
Nevertheless, the developed IoT model is 
applicable for the desired  use case. Further 
analyses are in progress. 

  
 
 
KPI3 
 
KPI2 
 
KPI1 
  
 
 
 
 
 
 
 
 
influence on KPIs 
  
real time energy monitoring platform for 

industrial applications. Proceedings of the 2015 
IEEE 19th International Conference on 
Computer Supported Cooperative Work in 
Design (CSCWD). May 6th ± 8th, 2015, 
Calabria/Italy. pp. 337±342. 

[9] Shrouf F, Ordieres J, Miragliotta G. Smart 
factories in Industry 4.0: A re- view of the 
concept of energy management approached in 
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production based on the Internet of Things 
Paradigm. Proceedings of the 2014 IEEE IEEM. 
December 9th ± 12th, 2014, Selangor/Malaysia. 
pp. 697±700. 

 

 
Fig. 10. IoT simulation results versus local 

simulation results 
 

5. Conclusion and Outlook 
The performance analysis indicates that the 

influence of  the parameters differs. It is possible 
to deduce certain requirements for data 
communication in general. The  delay time has a 
major influence on all considered KPIs. 
Therefore, it is important to provide data very 
fast, whereas the topicality of the data is less 
important. The results show that data conduction 
plays a significant role compared to data 
computing. The control strategies are able to 
reduce costs and CO2 emissions and increase the 
time of grid neutrality. Nevertheless, control 
strategy 3 shows weak results compared to 
control strategy 1 or 2. The factory configuration 
has a higher input than the regarded influencing 
parameters. Therefore, it is important to 
implement energy flexibility and on-site 
generation in early planning steps and apply the 
closed loop control in addition to ensure most 
sufficient results. In addition to the conducted 
simulations further analyzes will be carried out 
with the IoT model to detect barriers and 
advantages of the cloud environment. 
Furthermore, the introduced IoT control loop 
will be integrated into machine tools to analyze 
the behavior under real conditions. An IoT 
communication system is already implemented 
and will be completed with the closed loop 
control for flexible production machines. 
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